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Abstract
This work presents an experimental investigation of the flow of a model yield stress fluid (yield
stresses between 5 and 21 Pa) driven by capillarity in horizontal glass tubes with diameters
ranging from 0.46 to 1.5 mm. It is shown that the liquid penetration stops after typically a few
centimeters. The results disagree with a simple model based on the balance between capillary
and frictional forces, suggesting that the yield stress fluid constitutive equation may not be valid
in the immediate vicinity of the wall. Scaling is proposed with respect to a dimensionless
number comparing the yield stress with the capillary pressure.

1. Introduction

The wicking of a Newtonian liquid in a capillary tube (i.e., the
ability of the tube to draw the fluid by capillarity) is governed
by the well-known Washburn equation [1]. If there are no
gravity effects (i.e. the tube is horizontal), the motion is entirely
determined by a force balance between capillarity and viscous
dissipation, which becomes increasingly larger as the liquid
advances. Since the net force acting on the fluid is constant,
the mean velocity of the liquid decreases as it progresses.
Neglecting inertia, and assuming perfect wetting (zero contact
angle), this simple force balance on the cylindrical volume of
fluid entered into a horizontal capillary tube of diameter d for
a length x yields:

τwπ dx = πd2

4
�P (1)

where �P = 4σ/d is the Laplace pressure induced by the
surface tension, σ . The mean velocity [2] is um = σd/8ηx
(where η is the fluid viscosity), which unlike the shear stress
depends on the tube diameter. Because um → 0 only for
x → ∞, the fluid will always be able reach the end of the
tube before stopping.

The global force balance given by equation (1) does
not depend on the fluid rheology, so that it is true also
for non-Newtonian fluids, and in particular for the so-called
viscoplastic or yield stress fluids. Such fluids respond like
elastic solids for applied stresses lower than a certain threshold
value, which is called the yield stress, and flow only when the
yield stress is overcome. A well-known constitutive equation
for yield stress fluids is provided by the Herschel–Bulkley

model [3], which can be written in the form:

τ = τ0 + C γ̇ n (2)

where γ̇ = du/dr is the shear rate, τ0 is the yield stress,
and C and n are constants. For n = 1 equation (2) reduces
to the Bingham model. However, although these models
are very popular, their simplicity does not provide always
an adequate description of some details of the yield stress
fluids phenomenology. To capture these details, constitutive
equations based on a more advanced rheophysical modeling
are necessary [4].

Practically, this behavior describes many situations,
including slurries and suspensions, some polymer solutions,
crystallizing lavas, muds and clays, heavy oils, avalanches,
cosmetic creams, hair gel, liquid chocolate, and some pastes.
Consequently, yield stress fluids have applications in many
different fields, ranging from the oil, gas and chemical
industries, to food processing, cosmetics and geophysical fluid
dynamics. A topic of particular relevance is the duct flow of
yield stress fluids [5], which still represents a rich source of
problems for both physicists and engineers [6–8].

When a yield stress fluid flows in a horizontal tube under
the action of the capillary force only, we might expect from
equations (1) and (2) that the meniscus should stop at the
critical distance for which the wall shear stress equals the yield
value:

x̄ = σ

τ0
. (3)

Since the shear stress is maximum at the wall, this means that
τ < τ0 everywhere inside the capillary tube, so that the fluid
cannot flow anymore. According to equation (3), this critical
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Figure 1. Measured yield stress of the model fluid as a function of
the gel concentration. The inset shows the method used to determine
the yield point for each fluid sample applying a stress ramp
measuring the resulting deformation.

distance should only depend on the physical properties of the
fluid, and be independent of the tube diameter.

This work presents experimental results that contradict
this argument. It is shown that there is indeed such a finite
length of penetration, but this quantity is observed to be much
larger than that predicted by equation (3), and to depend
strongly on the tube diameter. It is proposed that such behavior
could be due to the fact that the constitutive equation of the
yield stress fluid may not give an accurate description of the
fluid in the immediate vicinity of the wall.

2. Experiments

Model yield stress fluids were prepared using a water-based
polymer gel (commercial hairdressing gel). Typically, the
composition of these gels includes a blend of water, alcohol,
silicones, glycerin, surfactants, and other polymers. In order
to change the value of the yield stress in a continuous
fashion, the gel was diluted into de-ionized water at different
concentrations (six dilutions with weight concentrations of
hair-gel equal to 25%, 30%, 32.5%, 35%, 37.5% and 40%,
respectively). To avoid foaming, the components were mixed
gently and then left at rest overnight to complete diffusion. The
fluid homogeneity was controlled by checking that water–gel
solutions had a uniform color, which could be verified by visual
inspection of the samples.

The yield stress of these model fluids was measured by
means of a Haake MARS rotational rheometer, equipped with
a plate–plate sensor having a diameter of 35 mm and a gap
of 1 mm. Sandpaper was glued on both the rotating an the
fixed surface in order to avoid wall slip effects (unlike other
yield stress fluid with coarser microstructure, such as foams
and emulsions, this is sufficient to eliminate unwanted gap
effects in the rheometer) [9]. The yield point of each fluid was
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Figure 2. Experimental arrangement of the capillary tubes
containing a model yield stress fluid (τ0 = 10.7 Pa) wicked from the
reservoir on the left, 25 min after the beginning of the experiment.
The ruler scale is in centimeter.

determined by imposing a stress ramp (100 points in 300 s) on
the fluid sample, and measuring the angular displacement of
the rotating plate: for small values of the stress, the sample
behaves like a solid and has a little deformation; when the
stress grows beyond a critical value, the sample starts flowing
and therefore the angular displacement of the disk grows
indefinitely at a faster rate. The crossover of the two straight
lines interpolating the deformation—stress curve in a log–log
scale before and after its bending point defined the yield point.
The fluid was pre-sheared at a constant shear rate of 50 s−1 for
30 s then left at rest for 30 s before each test, to ensure that
all samples were in the same conditions. To exclude potential
time effects, the same sample was re-tested after 10 min. The
measurements are reported in figure 1, which shows that the
yield stress is a linear function of the hair-gel mass fraction
of the solution; the least-squares best fit gives the following
correlation for the yield stress:

τ0 = 99.4C − 19.1. (4)

The equilibrium surface tension of the fluids was measured
with a Kruss EasyDyne tensiometer equipped with a De Nouy
ring. Since the sensor displacement is imposed, this method is
not affected by the yield stress of the fluid: in fact, whatever
the concentration of gel, the measured surface tension was
34 ± 2 mN m−1, in good agreement with the value measured
for aqueous solutions of polysorbate 20 surfactant above the
critical micellar concentration (36 mN m−1) [10]. Because
the timescale of the experiments was of the order of hours,
dynamic surface tension effects were ignored.

Experiments were carried out using five borosilicate glass
tubes 125 mm long, with diameters equal to 0.46, 0.64, 1.02,
1.18 and 1.5 mm, respectively, and glued onto a horizontal
support which could be moved using a precision screw. The
yield stress fluid was deposited with a laboratory spoon in a
small reservoir which was then sealed leaving only a narrow
rectangular opening, and put in contact simultaneously with the
five capillaries within a very short time (∼10–20 s). Attention
was paid to repeat the procedure exactly in the same way, to
ensure that experiments had the same initial condition. The
arrangement of the tubes during one experiment is shown
in figure 2. At the end of each experiment, the fluid was
completely replaced and new capillaries were used.
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Figure 3. Examples of flow curves obtained in five capillary tubes for different values of the yield stress: (a) τ0 = 5.5 Pa; (b) τ0 = 10.7 Pa;
(c) τ0 = 15.5 Pa; (d) τ0 = 20.6 Pa.

The displacement of the fluid in the capillary tubes
was recorded by a CCD camera at a sampling rate of
1 frame min−1, until the fluid stopped moving or reached the
end of all the capillaries. Depending on the fluid viscosity and
yield stress, the typical duration of each experiment ranged
from 1.5 to 6 h (thicker fluids required longer experiments).
The digital images captured by a frame grabber were stored on
a computer and post-processed to determine the progression of
the advancing front of liquid.

3. Results and discussion

The dynamics of the fluid displacement inside the capillary
tubes was studied by tracking the position of the meniscus in
the capillaries with respect to time. Four examples referred
to different values of the model fluid yield stress are shown
in figure 3. For low values of the yield stress (figure 3(a)),
the fluid reaches the end of the tube in a relatively short time,
much like a Newtonian fluid. However, when the yield stress is
sufficiently high the flow actually stops before reaching the end

of the tube. In all cases, the fluid stops at a distance from the
tube inlet that is much larger than the critical length calculated
with the simple model outlined above: for example, when the
yield stress is 15.5 Pa (figure 3(c)), we expect that the fluid
should stop at x̄ = σ/τ0 = 2.2 mm, while experiments show
values one order of magnitude larger.

Due to the very long timescale of the experiments, the
flow may be affected by a thixotropic behavior of the fluid. In
particular, because (with the exception of the initial transient in
the smaller tubes) the fluid hardly moves, one can reasonably
assume that the effect of thixotropy would be an increase of
the apparent viscosity. However, the rheometric tests described
above show that no systematic changes occur when the sample
is re-tested after resting for 10 min. This suggests that when
microscopic interactions within the fluid are destroyed by
shearing can re-form in a short time (of the order of 1 min).

The summary of all the experiments for which the flow
stops before reaching the end of the capillary is reported in
figure 4, where the measured wicking length is plotted as
a function of the tube diameter for different values of the
yield stress: the larger the diameter, the smaller this length

3
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Figure 4. Maximum length of penetration of the yield stress fluid as
a function of the tube diameter.

of penetration. This also disagrees with the above argument,
where the critical length was expected to depend on the surface
tension and the yield stress, but not of the tube diameter.

Taking into account the fluid viscosity, the wicking
length must be therefore a function of four quantities (yield
stress, surface tension, viscosity and tube diameter), or
two dimensionless numbers: the Bingham number, Bm =
τ0 D/ηu, and the capillary number, Ca = ηu/σ . However,
the force balance given by equation (1) also defines a
dimensionless number which is simply the product of the
Bingham number (where the tube diameter has been replaced
by the penetration length) and the capillary number, and
compares the action of capillarity (or the shear stress at the
wall) with the yield point of the fluid:

B̂ = yield stress

wall shear stress
= τ0x

σ
. (5)

This number can be used to re-formulate the condition to
determine whether the fluid moves in the tube (B̂ < 1) or not
(B̂ � 1).

Because the force balance of equation (1) is always
true, the simplest explanation for the experimental results
shown in figures 3 and 4 is that the fluid does not remain
homogeneous under shear flow in the vicinity of the wall,
causing a substantial reduction of the effective yield stress. In
particular, when a fluid consists of a suspension of particles
(including colloids), which is the case of most yield stress
fluids, this phenomenon is often caused by a depletion of such
particles near the wall [9, 11], not necessarily only at rest but
also during flow, because particles are expected to migrate
towards regions of less intense shear rates. In the depleted
layer of fluid, which has a lower viscosity than the bulk fluid
and a thickness of the order of the particles size, the velocity
gradient may be very high, so that the velocity profile seems to
violate the no-slip boundary condition. It should be noted that a
shear-induced yield stress reduction is not necessarily the result

of wall depletion, but may be due to other mechanisms: for
example, there is evidence that shear flow can lead to structural
evolution even in fixed volume fraction suspensions [12].

Apparent wall slip due to depletion has been investigated
extensively in rheometric flows, with the purpose of
interpreting data affected by wall slip in terms of the effective
rheological behavior of the homogeneous fluid [13–15]. It
is interesting to observe that in capillaries wall slip also
depends on the diameter, and occurs in addition to some bulk
flow [14]. More recent measurements of the instantaneous
velocity profiles of yield stress fluids confirm that wall slip
occurs when the magnitude of the wall shear stress is around
the yield point [16].

If the maximum penetration length is calculated using a
reduced value for the yield stress in the depleted region near
the wall, τ0,eff < τ0, we expect a wicking length x̄ = σ/τ0,eff >

σ/τ0, which is compatible with the experimental observations.
To prove this scenario, one should be able to relate the onset
of wall slip, which can be seen as a failure of the constitutive
equation of the fluid [17], to the Bingham-capillary number.
In particular, one can check whether a simple one-dimensional
theory that describes wall slip and shear banding phenomena
in non-Newtonian flows [17, 18] yields the same transition
criterion based on the Bingham-capillary number defined by
equation (5).

According to the general form of their constitutive
relation, the flow equations of non-Newtonian fluids may
exhibit a transition from the elliptic to the hyperbolic type [19].
In particular, if the fluid viscosity depends only on the
invariants of the velocity gradient tensor (i.e., viscosity is a
quantity independent of the coordinate system), the momentum
equation for the one-dimensional, steady flow (with one
velocity component, w, in the axial direction, z) can be reduced
to the form:

η(γ̇ )

λ

{[
λ −

(
∂w

∂x

)2]
∂2w

∂x2
+ 2

∂w

∂x

∂w

∂y

∂2w

∂x∂y

+
[
λ −

(
∂w

∂y

)2]
∂2w

∂y2

}
= 0 (6)

where γ̇ =
√

( ∂w
∂x )2 + ( ∂w

∂y )2 is the shear rate, η(γ̇ ) is the

apparent viscosity, and

λ = −γ̇ η(γ̇ )
dγ̇

dη
. (7)

The parameter λ is related to the rheological properties of
the fluid. For λ < 0 the equation describes a shear-thickening
(or dilatant) fluid, while for λ > 0 the equation describes a
shear-thinning fluid.

Equation (6) is formally identical to the momentum
equation of the two-dimensional flow of a calorically ideal
gas [20]. This can be obtained by replacing the velocity of the
non-Newtonian fluid, w, by the velocity potential of the gas,
the apparent viscosity by the gas density, and the parameter λ

by the square of the speed of sound. Thus, in this analogy,
the shear rate of the non-Newtonian fluid corresponds to the
velocity of the gas [18].
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As it is well known, equation (6) is always elliptic for
λ < 0, while for λ > 0 it is elliptic if γ̇ <

√
λ and hyperbolic

if γ̇ >
√

λ. Thus, one can define a Mach number for the
non-Newtonian flow as M = γ̇ /

√
λ, so that the transition

from elliptic to hyperbolic flow occurs at the critical value
M = 1. At this critical Mach number the viscosity (which
in the analogy corresponds to the gas density) and the shear
rate (corresponding to the gas velocity) are discontinuous. This
model can be thus used to give a simplified description of
phenomena like wall slip, but also shear banding and shear-
induced phase transitions [21–23].

In the case of yield stress fluids, one can use the common
Herschel–Bulkley constitutive model (equation (2)), so that the
apparent viscosity is given by η = (τ0 + C γ̇ n)/γ̇ , and the
parameter λ can be made explicit. It writes:

λ = γ̇ 2τ

nτ0 + (1 − n) τ
(8)

with a corresponding Mach number:

M =
√

1 + n
(τ0

τ
− 1

)
. (9)

The flow equations change from elliptic to hyperbolic for
M = 1, which occurs for τ = τ0: from a physical point of
view, this change is represented by a discontinuity of the shear
rate and of the apparent viscosity (which in the gas-dynamic
analogy correspond to the gas velocity and to the gas density,
respectively).

At the tube wall, the shear stress is given by the balance
between capillary and viscous forces, i.e. τw = σ/x , so that:

Mw =
√

1 + n
(τ0x

σ
− 1

)
. (10)

For τ → τ0 (i.e., γ̇ → 0), one can use the approximation
n ≈ 1 in the constitutive relationship, which becomes that
of an ideal Bingham fluid, and the Mach number at the wall
reduces to:

Mw =
√

τ0x

σ
=

√
B̂. (11)

Thus, the Bingham-capillary number is the square of the Mach
number of the non-Newtonian flow evaluated at the tube wall:
this means that its critical value (B̂ = 1) corresponds to a
structural change of the fluid near the wall, which causes a
reduction of the effective yield stress and apparent wall slip.
Consequently, the maximum penetration length is not reached
when τw = τ0 (i.e., when B̂ = 1), but rather when τw =
τ0,eff < τ0 (i.e., when B̂ > 1), which confirms the conjecture
proposed above. At the same time, this analysis suggests that
for B̂ > 1, the flow is no longer of the Hagen–Poiseuille type
but may exhibit a discontinuity of the velocity gradient at the
tube wall.

Although this argument allows us to understand why the
measured penetration length can be greater than expected, it
does not capture the dependence on the tube diameter. To
investigate the effect of this parameter, one can re-plot the data
of figure 4 in dimensionless form with respect to B̂, using the

Figure 5. Dimensionless maximum length of penetration of the fluid
plotted with respect to the Bingham-capillary number. The dashed
lines are the power-law best fits of the experimental data for B̂ < 0.5
and B̂ > 0.5, which return x̄/d = 7.8B̂−1.9 and x̄/d = 3.1B̂−4.1,
respectively.

tube diameter as characteristic length (in this case, the notation
B̂d = τ0d/σ can be used in order to avoid confusion). As
shown in figure 5, all the points tend to collapse on a single
curve, confirming that the Bingham-capillary number is the
main parameter governing this phenomenon.

The best fit of the experimental data suggests the following
scaling:

x̄

d
∼ B̂−2

d B̂d < 0.5

x̄

d
∼ B̂−4

d B̂d > 0.5.

(12)

Because when the flow stops τw = τ0,eff = σ/x̄ , one can write:

x̄

d
= σ

τ0,effd
= B̂−1

d,eff (13)

and equation (12) reduces to B̂d,eff ∼ B̂2
d for B̂d < 0.5 and

B̂d,eff ∼ B̂4
d for B̂d > 0.5.

4. Conclusions

An experimental investigation of the flow of a model yield
stress fluid driven by capillarity in tubes of submillimetric
diameter shows that wicking stops after typically a few
centimeters, in spite of a negligible gravity (tubes were
displayed horizontally). The simplest model we can think of,
i.e. a balance between capillary and frictional forces, indicates
that the fluid should indeed stop flowing when the wall
shear stress equals the yield stress. The measured maximum
penetration length, however, was found to be much larger than
predicted by this simple argument; in addition, it was observed
to depend on the tube diameter, which was not expected.
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It is suggested that the cause of such behavior is a
structural change of the fluid that occurs in the immediate
vicinity of the wall (wall depletion), which is known to
determine apparent wall slip in many yield stress fluids. Both
the onset of slippage (with the associated reduction of the
actual yield stress magnitude at the wall) and the dependence of
the results on the tube diameter can be captured by introducing
a dimensionless number (the product of the Bingham and the
Capillary numbers) which expresses the competition between
the yield stress and the capillary pressure.
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[6] Daprà I and Scarpi G 2004 Start-up of channel-flow of a
Bingham fluid initially at rest Rendiconti Lincei-Matematica
e Applicazioni s.9 15 125–35

[7] Engin T, Dogruer U, Evrensel C, Heavin S and
Gordaninejad F 2004 Effect of wall roughness on laminar
flow of Bingham plastic fluids through microtubes Trans.
ASME, J. Fluids Eng. 126 880–3

[8] Nouar C 2005 Thermal convection for a thermodependent yield
stress fluid in axisymmetrical horizontal duct Int. J. Heat
Mass Transfer 48 5520–35

[9] Barnes H A 1995 A review of the slip (wall depletion) of
polymer solutions, emulsions and particle suspensions in
viscometers: its cause, character, and cure J. Non-Newton.
Fluid Mech. 56 221–51

[10] Mittal K L 1972 Determination of CMC of polysorbate 20 in
aqueous solution by surface tension method J. Pharm. Sci.
61 1334–5

[11] Kok P J A H, Kazarian S G, Briscoe B J and
Lawrence C J 2004 Effects of particle size on near-wall
depletion in mono-dispersed colloidal suspensions J. Colloid
Interface Sci. 280 511–7

[12] Varadan P and Solomon M J 2001 Shear-induced
microstructural evolution of a thermoreversible colloidal gel
Langmuir 17 2918–29

[13] Mooney M 1931 Explicit formulas for slip and fluidity
J. Rheol. 2 210–22

[14] Jastrzebski Z D 1967 Entrance effects and wall effects in an
extrusion rheometer during the flow of concentrated
suspensions Ind. Eng. Chem. Fundam. 6 445–53

[15] Yoshimura A and Prud’homme R K 1988 Wall slip corrections
for Couette and parallel disk viscometers J. Rheol.
32 53–67

[16] Bertola V, Bertrand F, Tabuteau H, Bonn D and
Coussot P 2003 Wall slip and yielding in pasty materials
J. Rheol. 47 1211–26

[17] Bertola V and Cafaro E 2007 Analytical solution for the
Hagen-Poiseuille flow of a hard sphere gas with nonlinear
shear viscosity J. Stat. Mech. P06017

[18] Bertola V and Cafaro E 2003 Analogy between pipe flow of
non-Newtonian fluids and 2D compressible flow
J. Non-Newton. Fluid Mech. 109 1–12

[19] Joseph D D 1990 Fluid Dynamics of Viscoelastic Liquids (New
York: Springer)

[20] Emanuel G 1986 Gasdynamics: Theory and Applications
(AIAA Education Series) (New York: AIAA)

[21] Olmsted P D 1999 Dynamics and flow-induced phase
separation in polymeric fluids Curr. Opin. Colloid Interface
Sci. 4 95–100

[22] Vermant J and Solomon M J 2005 Flow-induced structure in
colloidal suspensions J. Phys.: Condens. Matter
17 R187–216

[23] Fischer E and Callaghan P T 2001 Shear banding and the
isotropic-to-nematic transition in wormlike micelles
Phys. Rev. E 64 011501-1

6

http://dx.doi.org/10.1103/PhysRev.17.273
http://dx.doi.org/10.1039/b611021p
http://dx.doi.org/10.1115/1.1792252
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.06.016
http://dx.doi.org/10.1016/0377-0257(94)01282-M
http://dx.doi.org/10.1002/jps.2600610842
http://dx.doi.org/10.1016/j.jcis.2004.08.032
http://dx.doi.org/10.1021/la001504d
http://dx.doi.org/10.1122/1.2116364
http://dx.doi.org/10.1021/i160023a019
http://dx.doi.org/10.1122/1.549963
http://dx.doi.org/10.1122/1.1595098
http://dx.doi.org/10.1088/1742-5468/2007/06/P06017
http://dx.doi.org/10.1016/S0377-0257(02)00146-5
http://dx.doi.org/10.1016/S1359-0294(99)00016-3
http://dx.doi.org/10.1088/0953-8984/17/4/R02

	1. Introduction
	2. Experiments
	3. Results and discussion
	4. Conclusions
	Acknowledgments
	References

